NEW APPROACH

A practical way to ensure you’re at the right place, configuration and speed

BY JAMES ALBRIGHT www.code7700

I have a confession to make.
In 35 years of flying high-performance jet aircraft, I have never gone around from an unstable approach. Not ever.

It isn’t that I’ve never had an unstable approach, it’s that I grew up with the “A pro never takes it around” mantra beaten into my head and the better I got at salvaging bad situations, the wider my tolerances became.

I think I finally understand what I’ve been doing wrong all these years and have a way to cure what ails me. How often do you land off an approach that violates your company’s stable approach criteria? Maybe I’m not the only pilot guilty of fudging the stable approach procedure.

Even before we gave it a name, we knew being stable early on approach was the best way to ensure the aircraft ends up on the near end of the runway configured to land and at the right speed. Story after story of hard landings, tail strikes and runway excursions have reinforced the need for stable approaches. Something gone awry during approach is often cited as causal for controlled and less-than-controlled flight into terrain. We all know that.

Today’s Stabilized Approach Procedure

Chances are your company’s standard operating procedure reads something like this:

The approach to landing must be stabilized no later than 500 ft. above the runway elevation (VMC) or 1,000 ft. above the runway elevation (IMC), the “stabilized approach height.” At this point the aircraft must be on centerline, on glideslope, configured to land, unless an abnormal procedure requires otherwise, and must not exceed the parameters listed below:

► One dot deviation from glideslope.
► One dot deviation from localizer.
► +10 kt., -5 kt. deviation from target speed.
► One-thousand fpm descent rate.
► A go-around must be executed if the aircraft exceeds any of these maximum deviation parameters below the stabilized approach height.

That’s what I’ve been using for about 10 years now. Or, more accurately, that’s what I’ve been failing to use for about 10 years now. My flight department instituted these procedures after studying one of the most puzzling examples of very good pilots flying for a very good operator but getting it all wrong: Southwest Airlines Flight 1455 landing at Burbank, Calif., on March 5, 2000.

The pilots were of the highest pedigree, two military veterans with lots of experience in type and with the operator. The airline’s stabilized approach rules have become an industry standard: At 1,000 ft. above touchdown the airplane must be plus or minus a dot in localizer and glideslope displacement, no more than 1,000-ft. sink rate and target speed +10/-5 kt. The crew was backed into a corner by circumstances and failed to go around though their average sink during the last 1,000 ft. was in excess of 2,000 fpm and they touched down more than 50 kt. hot. The Boeing 737-300’s tires touched pavement 3,000 ft. down the 6,032-ft.-long runway and the airplane could not be stopped in the remaining runway. Nobody was seriously hurt in the accident that followed, but the airplane was destroyed.

A Good Procedure, Often Ignored

I’ve often thought, if pilots of the caliber of the Southwest Flight 1455 crew can get it so wrong, what are my chances? Both pilots were aware of their company’s stable approach policy, but the idea of going around never crossed their minds. I think they were good pilots working for...